电源滤波器,又名“电源EMI滤波器”,或是“EMI电源滤波器”,是一种无源双向网络,是一种对电源中特定频率的频点或该频点以外的频率进行有效滤除的电气设备。当我们选用电源滤波器时,应主要考虑三个方面的指标;首先是电压、电流,其次是插入损耗,最后是结构尺寸。由于滤波器内部一般是经过灌封处理的,因此环境特性不是主要问题。但是所有的灌封材料和滤波电容器的温度特性对电源滤波器的环境特性有一定的影响。 电源滤波器是一种无源双向网络,它的一端是电源,另一端是负载。 电源滤波器的原理就是一种——阻抗失配网络:电源滤波器输入、输出侧与电源和负载侧的阻抗失配越大,对电磁干扰的衰减就越有效。 电源滤波器内部电路 电源滤波器的作用: EMI电源滤波器起到两个低通滤波器的作用:一个是衰减共模干扰,另一个是衰减差模干扰。 EMI电源滤波器能在阻带范围内衰减射频能量,而让工频无衰减,或者很少的衰减,就能通过EMI电
:handshake
镇江丹徒县化纤厂用了3台700A的思源有源滤波器全部坏了,难导国产的有源滤波器真的不行吗?
各位好,谐波滤波器一般在什么地方安装?目前接触过的工程中只有一个需要安装滤波器,请问它的作用是什么?有没有参考的安装图给我看看呀?
我司几条主要生产线都安装了电源滤波器,近期发现滤波器的电抗器的声音很响,主电流为450安培,主电流比刚安装时上升了100安培左右,且谐波电流有40安培,请问哪位高手,帮帮分析原因,有无遇到类似的问题,指点指点,
知识点:电源滤波器
基于PWM逆变器的LC滤波器.pdf
GCS柜体的
接触到一个项目:是一台排气风机(132KW),拟采用2台变频器(互为备用)进行控制,业主在设计初期要求在每台变频器前加装谐波滤波器,并要求谐波抑制率<8%,后业主为了节约成本问能否只加装1台滤波器给变频器用,因为两台变频器不可能同时运行的!请问:1,能否这样做呢?2,方案应该怎么设计!谢谢
1接地电容效果分析 在电路中电容C容抗值Zc=1/2πfC,且容抗随着频率f的增大而减小。因此滤波器电路中一个恰当的接地电容C,可使交流信号中的高频成分通过电容落地,而低频成分可以几乎无损失通过,故将小电容接地等同于设计一阶低通滤波器。在滤波器电路中,多处电容接地设计等同于多个低通滤波器与原电路组成低通滤波器网络,在提高截止频率附近幅频特性的同时会较好抑制高频干扰,因而接地优化在理论上是可行的。 2滤波器设计仿真 根据实践需要,设计满足上级输出电路阻抗为100Ω、下级输入电路阻抗为50Ω、截止频率为5MHz的5阶巴特沃斯低通滤波器。普通差分滤波器由于其极点与单端滤波器极点相同,故具有相同的传递函数,因而依据单端滤波器配置的差分结构滤波器能够满足指标要求。在差分结构
有源滤波器和无功发生器的应用
知识点:压控电压源二阶低通滤波器
无源滤波器的仿真设计,提供以下资料:1.谐波电流频谱(各次谐波电流的大小)2.系统短路容量3.主变压器短路阻抗4.负荷情况,特别是容性负荷的大小5.背景谐波电压的频谱6.谐波源的容量,和实际功率因数等
好东西!
电容器滤波器组的设计与仿真
一、二极管箝位三电平技术 二极管箝位三电平拓扑由日本学者Nabae. A 等人在1980 年提出,经过近30年的发展,广泛应用于电力电子技术的各个领域。二极管箝位三电平拓扑的优势在于,各个开关管承受的反向电压为直流母线电压的一半,可以用较低电压等级的开关管,组成较高电压等级的变流器。这个技术现在已经广泛的应用于中压大功率交流传动系统中。采用6500V等级的IGBT或IGCT的三电平中压变频器,已经广泛应用于4.2kV电动机传动系统。通常三电平技术一般应用于电压较高、功率较大的系统中,正是由功率器件耐压有限与变流器系统需求电压较高的矛盾现实决定的。但是我们应该看到二极管箝位三电平拓扑本身固有的一些优势。 (1) 用电压等级较低的开关管构成电压等级较高的变流器,随着功率器件技术的不断发展,市场上已经有6500V的IGBT出售,但是耐压越高的IGBT其开关损耗越高,最高开关频率也变得比较低。3300V以上的IGBT开关频率最高不会超过5kHz,1200V的IGBT的开关损耗远大于600V的IGBT。采用低压IGBT的三电平变流器的开关损耗远低于同样
所谓谐波,是指电力系统和电力设备的使用过程中产生的频率为工频交流电基本频率(50Hz 或60Hz)的整数倍数的一系列周期性的电流或电压分量,它们的波形为也是标准正弦波。 在电力系统中出现的七次谐波畸变,就需要用第七谐波滤波器进行处理。第七谐波滤波器广泛的应用于商业化办公楼宇、医院医疗、体育馆、展览馆、星级酒店、机场航站、学校等民用建筑在,此外,石油化工工业、汽车制造工业、钢铁工业、半导体电子工业、通迅行业、造纸轻工工业、烟草工业等现代工业中也应用的非常广泛。 在有色金属铝的冶炼生产中,铝电解槽需要大而稳定的直流电流作为能源驱动。电解槽,电抗器所需的大量的直流电流通常是由整流机组提供的。整流机组是将工频交流电转换成直流电的设备。目前,整流机组常使用的是12 脉波整流桥整流技术,这种整流技术在为电解槽提供稳定电力能源的同时,也向供电系统中输入了大量的谐波电流,这些谐波电流给电力系统的安全稳定运行,对其它电力用户正常用电造成严重的不利影响。 因此,
0 引言 微波滤波器在卫星通信、中继通信、雷达、电子对抗及微波测量仪表中都有着广泛的应用。在卫星通信系统中,微波滤波器的性能直接影响着转发器通道的通信品质;对于无线通信系统而言,滤波器是一种至关重要的微波射频器件,它的使用对于分离频谱信息、提高通信质量、防止信号串扰有着十分重要的意义。在电磁环境日益复杂和频谱范围日益拥挤的今天,实现选频和去噪等重要功能的微波滤波器越来越受到使用者的重视。 一般而言,滤波器手动调试实际上是一个实时迭代优化的过程。为了便于调试,滤波器结构上会有调试用的调谐螺钉,或者有其他形式的调谐元件,以便调试技术人员调试的时候可以改变滤波器谐振单元的谐振频率和谐振单元间的耦合量。调试技术人员调试的时候,根据矢量网络分析仪图形变化反复拧调谐螺钉,直到滤波器的性能达到设计要求。对许多调试技术人员而言,手动调试的过程更像一门手艺而不是一门科学。因此,复杂结构微小滤波器的手动调试一般都是由十分有经验的调试技术人员来完成的。 在大批量的调试生产过程中,功率容量、温度效应、材料机械特性、无源三阶交调以及尺寸限制等都是滤波器实际加工中的重要考虑