1、中性点不接地系统中,单相接地短路时,原中性点电位是多少?既然大地是0电位,为什么还有从大地到非接地两相的容性电流?是否非接地相电压在负半轴时才有这个容性电流?为什么单相接地情况下还可以允许系统继续工作一段时间?
变电站的接地,因目的不同分为以下四类:工作接地:在电力系统中,为保证系统在正常情况和事故情况下能够可靠地工作而需要的接地。如变压器中性点接地,10-35kV系统中性点经消弧线圈的接地等。保护接地:电气设备的金属外壳或构架,当电气设备的绝缘损坏时其可能带电,为了防止触电危及人身安全,必须将电气设备的金属外壳或构架接地,又称安全接地。过电压保护接地:过电压保护装置是为了消除过电压对设备的威胁而装设的接地。如避雷针、避雷线和避雷器的接地。防静电接地:易燃油、天然气储罐和管道等,为了防止静电危险影响而设的接地,称为防静电接地。
1 电力系统中性点接地方式的分类 电力系统中性点接地方式有两大类,一类是中性点直接接地或经过低阻抗接地,称为大接地电流系统,另一类是 中性点不接地,经过消弧线圈或高阻抗接地,称为小接地电流系统。其中采用电广泛的是中性点接地,中性点经过消弧线圈接地和中性点直接接地等三种方式。 1.1中性点不接地系统 中性点不接地方式,即中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省、适用于农村10KV架空线路长的辐射形或树状形的供电网络。当中性点不接地的系统中发生一相接地时,接在相间电压上的受电器的供电并未遭到破坏,它们可以继续运行,但是这种电网长期在一相接地的状
知识点:中性点
电力系统中性点节地技术.zip
电力系统中性点接地方式及运行分析
请问我国电压0.4KV、3~35KV和110KV及以上电压等级的电网中性点运行方式各有什么不同,有什么利弊?请大家发表意见共同探讨,以求共同进步
最近在做一个印尼的项目,请对印尼电力系统熟悉的朋友介绍一下:低压系统与我们是否一样是三相五线TNS系统,还是TN-C系统,或者其它方式?还有其它在设计方面需要注意的地方,请大家指教。谢谢!
三相交流电是与输电技术的发展紧密相连的。1873年维也纳国际博览会法国弗泰内,使用2km的导线,把一台用瓦斯发动机拖动的格兰姆直流发电机,和一台转动水泵的电动机连接起来。1874年,俄国皮罗茨基建立了输送功率为4.5kW的直流输电线路,输送距离一开始是50m,后来增加到1km。然后就开始向高压输电发展了。一开始是直流输电,但想要传输更远的距离,就必须再提高电压。在当时的条件下,直流输电没条件了:发电机电压受限制、直流没有变压器等等。后来还发生过一场交流、直流输电之争。可见,从交流输电一开始,并不是三相的,呵呵。1832年,人们就发明了单相交流发电机。1876年、1884年、1885年,单相变压器得到了发展。问题在于应用交流电驱动工作机械。交流感应电动机的出现,与“旋转磁场”这个研究紧密相连。1825年,1879年,1883年都是旋转磁场发展的节点,1885年,弗拉利斯制成了第一台两相感应电动机;1888年他又提出了“利用交流电来产生电动旋转”这一经典论文。1888年俄国多布罗斯基发明了三
对电力系统多种类型故障调查分析显示,铁磁谐振的
110kV及以上的系统、1kv以下的系统均采用中性点有效接地的运行方式.但是在3~66kV的电力系统中,有的采用直接接地方式,有采用经消弧线圈接地的方式,有采用经小电阻接地的方式,不知道为啥,请各位指教!!
我看网上有很多关于短路容量的说法,用标幺值法或者简化法,要计算变压器电抗值,电感值、线路电抗值,要知道输电每一级的参数才能计算出短路容量。但是现在我只想在企业里的变压器母线上要得到短路容量如何计算?比如一个1600kvar 10k/0.4k uk%=6%的变压器短路电流为:1600/0.4/1.732*6%*100=38490A,短路容量为:38490*400*1.732=26.67MVA 是否正确?如果要计算变压器支路下地短路容量是否要考虑中间电缆的阻抗?还有,计算为什么用0.4K而不是用10K呢?
为何在变压器投切的时候需要对电网进行环网操作,一般电力系统的环网操作出现在那些情况,其作用是什么?例子:我们公司的化工生产区域电力系统是单母线分段运行(A、B段运行),现在要停运A段的6000/380的变压器,由 B段的6000/380变压器单独运行,我们企业的操作如下:先将从电站出来主6千伏母联合闸,然后将该低压侧上方的高压侧母联合闸,然后再将低压侧的母联合闸,实现合环,最后才将A段变压器分闸。切除变压器之后,将低压侧的母联断开,再断高压侧母联,最后断开主6千伏的母联,实现解环。请问为何要合环才可以切除变压器,以及其中的操作注意点是什么。求指点。
为何在变压器投切的时候需要对电网进行环网操作,一般电力系统的环网操作出现在那些情况,其作用是什么?例子:我们公司的化工生产区域电力系统是单母线分段运行(A、B段运行),现在要停运A段的6000/380的变压器,由 B段的6000/380变压器单独运行,我们企业的操作如下:先将从电站出来主6千伏母联合闸,然后将该低压侧上方的高压侧母联合闸,然后再将低压侧的母联合闸,实现合环,最后才将A段变压器分闸。切除变压器之后,将低压侧的母联断开,再断高压侧母联,最后断开主6千伏的母联,实现解环。请问为何要合环才可以切除变压器,以及其中的操作注意点是什么。求指点。
【摘要】本文对国内、外电压稳定性的研究现状进行了概述,特别介绍了电压崩溃的概念、物理解释及电压崩溃的防范措施。 过去几十年中,在发达国家中电压崩溃事故屡屡发生,造成了巨大的损失。展望今后电力系统的发展,如下一些因素将使稳定性问题继续存在并有恶化的趋势。(1)因能源基地远离负荷中心,这就造成线路电抗和传输功率的增大及潮流的不合理分布,从而使系统稳定性下降。(2)发电机单机容量的增大带来发电机同步电抗增大和机组惯性时间常数减小,这两者的后果都将恶化系统的稳定性。(3)输电线路容量增大。这样,当线路因事事故断开时,送、受端系统出现更大的功率缺额,增加了对电力系统稳定性的威胁。(4)输电线路的多回路增加了线路间多重故障的可能性。 在我国电压不稳定和电压崩溃出现的条件同样存在。目前国内电压不稳定问题“暴露不突出”,原因之一可能是出于大多数有载调压变压器分接头(LTC)未投入自动切换和电力部门采取甩负荷的措施,而后一措施
一、电力系统电压调整的必要性 电压是电能质量的重要指标,电压不合格会对电网造成严重的危害。电压偏移过大,会影响工农业生产的质量和产量,损坏电力设备,甚至引起系统性“电压崩溃”,造成大面积停电。 1.电网电压偏低 (1)电网电压偏低的原因。由于早期设计的供电网络或配电网络结构不合理,特别是一些线路送电距离长,供电半径大,导线截面小,使线路电压损失较大。电网无功功率电源不足或无功补偿设备管理不善、长期失修、经常停用等,使无功平衡破坏,这是电网电压水平普遍降低的根本原因。变电所变压器分接头位置放置不合理,电网接线不合理,负荷过重,负荷功率因数低,电力设备检修及线路故障等,都可使电网电压下降。[1]
理论知识看电力系统分析就行,电力专业标准教材。至于理解的话,就没办法了,慢慢悟了。从自身经验看,简单的方法还是类比,电力系统看成自然界水循环,所谓稳态,就是从青藏高原流到黄浦江口,有河道就有水流,总有干流支流(主网配网),也有南水北调(超高压/直流输电),维持稳定,只要保证不决堤就行了(二次保护),至于哪滴水流到哪个省(发电厂-用户),没人知道,也没必要知道,水自然会流。
一、电力系统简介电力系统 由发电、电力网(变电、输电、配电)和用电等环节组成的电能生产与消费系统。它的功能是将自然界的一次能源火、水、风、核等,通过发电动力装置转化成电能,再经变电系统、输电系统及配电系统将电能供应到各负荷中心——用户<