首页 课程 资料 论坛
  • 电力系统中谐波的危害与产生

    电力系统中谐波的危害与产生

  • 谐波对电力系统的危害及预防措施

    随着工业生产自动化的不断提高,半导体器件的问世发展,特别是大型可控硅及逆变器等非线性负载的逐步增多,而这些非线性负载能把高次谐波电流注入电网。从而引起电网系统电压和电流波形发生畸变,使电网受到严重污染。 高次谐波就是频率为基数倍的一系列波的“总汇”。工频系统的二次谐波频率为100HZ,三次谐波的频率为150HZ,依次类推。电力系统中高次谐波与基波合成的结果是造成电网电压波形畸变的主要因素,高次谐波的畸变次数及振幅值的大小,将决定对电网污染,破坏的程度,及对用电设备的危害大小。高次谐波最主要来源于:个人计算机,各种硅整流设备、含有二极管(电容式)电源设备、电弧炉设备、中频电源设备、各种变频逆变器、斩波器等装置

  • 电力系统谐波的危害及其常用抑制方法

    在电力系统中采用电力电子装置可灵活方便地变换电路形态,为用户提供高效使用电能的手段。但是,电力电子装置的广泛应用也使电网的谐波污染问题日趋严重,影响了供电质量。目前谐波与电磁干扰、功率因数降低已并列为电力系统的三大公害。因而了解谐波产生的机理,研究消除供配电系统中的高次谐波问题对改善供电质量和确保电力系统安全经济运行有着非常积极的意义。1、谐波及其起源 所谓谐波是指一个周期电气量的正弦波分量,其频率为基波频率的整数倍。周期为T=2π/ω的非正弦电压u(ωt),在满足狄里赫利条件下,可分解为如下形式的傅里叶级数:式中频率为nω(n=2,3…)的项即为谐波项,通常也称之为高次谐波。

  • 电力系统谐波测量方法浅析

    随着近年来国民经济的不断发展以及科学技术的不断提高,电能已经成为社会生产和生活当中所必需品之一,在人们日常的生活以及生产当中占据了无法替代的位置。特别是自从上世纪90年代初以来,伴随着现代电力技术的高速发展使电能得到了更加充分的利用,随之而来的是大量新型负荷、非线性负载的投入使用,结果由这些新设备所产生的谐波污染却日趋严重,使得整个系统当中的电压波形畸变愈发严重,给整个电网造成了很大的威胁。谐波已经成为影响电力系统当中电能质量的一个重要因素,成为人们日益关注的问题[1]。 由于谐波对电网以及电气设备所造成的危害日趋严重,为了保障电网安全高效的运行,减少谐波所造成的损害,所以我们需要从谐波产生的原因和基本性质进行深层次的分析和研究,从而找到更为精确的谐波测量方法并研制出实时性好、精度高的谐波测量装置,能够更加精确的测量谐波的各项数据,从而为更好地抑制和治理谐波提供支持。而且通过谐波

  • 电力系统谐波的危害及测量方法

    随着电力电子技术的发展及其广泛应用,电力电子装置带来的谐波问题对电力系统安全运行构成的潜在威胁日趋严重,谐波污染已被认为是电网的一大公害,引起世界各国的高度重视,它涉及电力电子技术、电力系统、电气自动化技术、理论电工等领域。其中谐波测量是谐波问题中的一个重要分支。本文根据国内外有关资料,对各种谐波测量方法进行了综述。 根据测量原理的不同,谐波测量方法可以分成以下几类:基于傅立叶变换理论、基于瞬时无功功率理论、基于神经网络理论和基于小波变换理论。 1. 谐波的危害 谐波是电网的一大公害,因此对电力系统谐波问题的研究越来越引起人们的重视。 1.1 对供配电线路的危害 (1)影响线路的稳定运行。供配电系统中的电力线路与电力变压器,一般采用

  • 电力系统高次谐波资料汇编

    电力系统高次谐波资料汇编

  • 求书----------《电力系统谐波》!!谢谢!!!

    有人推荐了本关于谐波方面的资料----------《电力系统谐波》,J.Arrillaga D.A.Bradley D.S.Bodger等人编著,容建纲、张文亮 翻译,华中理工大学出版社,书号:ISBN7-5609-858-8/TM·47,听说不错,哪位大虾手里有?请上传一份,谢谢!![ 本帖最后由 markmean 于 2008-7-4 14:45 编辑 ]

  • 电力系统谐波(第二版).pdf

    电力系统谐波(第二版).pdf

    简要说明:本书原著是国际知名电能质量专家Jos A耐llaga和NevilJe R.watson的著作。主要内容包括:概论、谐波分析、谐波源、谐波畸变的影响,谐波监测,谐波的消除、谐波潮流计算,以及先进的谐波评估方法。 文件格式:PDF 文件大小:10.3 M

  • 有关印尼电力系统的问题?

    最近在做一个印尼的项目,请对印尼电力系统熟悉的朋友介绍一下:低压系统与我们是否一样是三相五线TNS系统,还是TN-C系统,或者其它方式?还有其它在设计方面需要注意的地方,请大家指教。谢谢!

  • 为什么电力系统是三相?【转】

    三相交流电是与输电技术的发展紧密相连的。1873年维也纳国际博览会法国弗泰内,使用2km的导线,把一台用瓦斯发动机拖动的格兰姆直流发电机,和一台转动水泵的电动机连接起来。1874年,俄国皮罗茨基建立了输送功率为4.5kW的直流输电线路,输送距离一开始是50m,后来增加到1km。然后就开始向高压输电发展了。一开始是直流输电,但想要传输更远的距离,就必须再提高电压。在当时的条件下,直流输电没条件了:发电机电压受限制、直流没有变压器等等。后来还发生过一场交流、直流输电之争。可见,从交流输电一开始,并不是三相的,呵呵。1832年,人们就发明了单相交流发电机。1876年、1884年、1885年,单相变压器得到了发展。问题在于应用交流电驱动工作机械。交流感应电动机的出现,与“旋转磁场”这个研究紧密相连。1825年,1879年,1883年都是旋转磁场发展的节点,1885年,弗拉利斯制成了第一台两相感应电动机;1888年他又提出了“利用交流电来产生电动旋转”这一经典论文。1888年俄国多布罗斯基发明了三

  • 电力系统短路容量怎么确定?

    我看网上有很多关于短路容量的说法,用标幺值法或者简化法,要计算变压器电抗值,电感值、线路电抗值,要知道输电每一级的参数才能计算出短路容量。但是现在我只想在企业里的变压器母线上要得到短路容量如何计算?比如一个1600kvar 10k/0.4k uk%=6%的变压器短路电流为:1600/0.4/1.732*6%*100=38490A,短路容量为:38490*400*1.732=26.67MVA 是否正确?如果要计算变压器支路下地短路容量是否要考虑中间电缆的阻抗?还有,计算为什么用0.4K而不是用10K呢?

  • 电力系统环网的作用和操作

    为何在变压器投切的时候需要对电网进行环网操作,一般电力系统的环网操作出现在那些情况,其作用是什么?例子:我们公司的化工生产区域电力系统是单母线分段运行(A、B段运行),现在要停运A段的6000/380的变压器,由 B段的6000/380变压器单独运行,我们企业的操作如下:先将从电站出来主6千伏母联合闸,然后将该低压侧上方的高压侧母联合闸,然后再将低压侧的母联合闸,实现合环,最后才将A段变压器分闸。切除变压器之后,将低压侧的母联断开,再断高压侧母联,最后断开主6千伏的母联,实现解环。请问为何要合环才可以切除变压器,以及其中的操作注意点是什么。求指点。

  • 电力系统环网操作和作用

    为何在变压器投切的时候需要对电网进行环网操作,一般电力系统的环网操作出现在那些情况,其作用是什么?例子:我们公司的化工生产区域电力系统是单母线分段运行(A、B段运行),现在要停运A段的6000/380的变压器,由 B段的6000/380变压器单独运行,我们企业的操作如下:先将从电站出来主6千伏母联合闸,然后将该低压侧上方的高压侧母联合闸,然后再将低压侧的母联合闸,实现合环,最后才将A段变压器分闸。切除变压器之后,将低压侧的母联断开,再断高压侧母联,最后断开主6千伏的母联,实现解环。请问为何要合环才可以切除变压器,以及其中的操作注意点是什么。求指点。

  • 电力系统如何维持稳态运行?

    理论知识看电力系统分析就行,电力专业标准教材。至于理解的话,就没办法了,慢慢悟了。从自身经验看,简单的方法还是类比,电力系统看成自然界水循环,所谓稳态,就是从青藏高原流到黄浦江口,有河道就有水流,总有干流支流(主网配网),也有南水北调(超高压/直流输电),维持稳定,只要保证不决堤就行了(二次保护),至于哪滴水流到哪个省(发电厂-用户),没人知道,也没必要知道,水自然会流。

  • 电力系统及工厂配电简介

    电力系统及工厂配电简介

    一、电力系统简介电力系统 由发电、电力网(变电、输电、配电)和用电等环节组成的电能生产与消费系统。它的功能是将自然界的一次能源火、水、风、核等,通过发电动力装置转化成电能,再经变电系统、输电系统及配电系统将电能供应到各负荷中心——用户<

  • 试论电力系统的电压调整

    一、电力系统电压调整的必要性 电压是电能质量的重要指标,电压不合格会对电网造成严重的危害。电压偏移过大,会影响工农业生产的质量和产量,损坏电力设备,甚至引起系统性“电压崩溃”,造成大面积停电。 1.电网电压偏低 (1)电网电压偏低的原因。由于早期设计的供电网络或配电网络结构不合理,特别是一些线路送电距离长,供电半径大,导线截面小,使线路电压损失较大。电网无功功率电源不足或无功补偿设备管理不善、长期失修、经常停用等,使无功平衡破坏,这是电网电压水平普遍降低的根本原因。变电所变压器分接头位置放置不合理,电网接线不合理,负荷过重,负荷功率因数低,电力设备检修及线路故障等,都可使电网电压下降。[1]

  • 关于电力系统电压崩溃综述

    【摘要】本文对国内、外电压稳定性的研究现状进行了概述,特别介绍了电压崩溃的概念、物理解释及电压崩溃的防范措施。 过去几十年中,在发达国家中电压崩溃事故屡屡发生,造成了巨大的损失。展望今后电力系统的发展,如下一些因素将使稳定性问题继续存在并有恶化的趋势。(1)因能源基地远离负荷中心,这就造成线路电抗和传输功率的增大及潮流的不合理分布,从而使系统稳定性下降。(2)发电机单机容量的增大带来发电机同步电抗增大和机组惯性时间常数减小,这两者的后果都将恶化系统的稳定性。(3)输电线路容量增大。这样,当线路因事事故断开时,送、受端系统出现更大的功率缺额,增加了对电力系统稳定性的威胁。(4)输电线路的多回路增加了线路间多重故障的可能性。 在我国电压不稳定和电压崩溃出现的条件同样存在。目前国内电压不稳定问题“暴露不突出”,原因之一可能是出于大多数有载调压变压器分接头(LTC)未投入自动切换和电力部门采取甩负荷的措施,而后一措施

点击加载更多

电力系统谐波

电力系统谐波专题,为您提供电力系统谐波相关的专业交流帖进行参与,欢迎您参与电力系统谐波 相关的专业交流讨论,更多电力系统谐波相关内容请访问

土木在线论坛

相关帖子

 

分享用户量

 

下载热度

 

谐波补偿

电力谐波分析仪