首页 课程 资料 论坛
  • IGBT应用电子电路设计图的集锦

    IGBT应用电子电路设计图的集锦

    IGBT绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。本文介绍了绝缘栅双极晶体管(IGBT)在不间断电源系统中的应用情况,分析了IGBT 在UPS 中损坏的主要原因和实际应用中应注意的问题。在UPS 中使用的功率器件有双极型功率晶体管、功率MOSFET、可控硅和IGBT,IGBT 既有功率MOSFET 易于驱动,控制简单、开关频率高的优点,又有功率晶体管的导通电压低,通态电流大的优点、使用IGBT成为UPS 功率设计的首选,只有对IGBT的特性充分了解和对电路进行可靠性设计,才能发挥IGBT 的优点。本文介绍UPS 中的IGBT 的应用情况和使用中的注意事项。 IGBT电路原理图

  • 保护电子电路设计图的集锦,供大家参考

    保护电子电路设计图的集锦,供大家参考

    在电路设计中总会存在着一些不稳定因素,而用来防止此类不稳定因素影响电路效果的回路称作保护电路。比如有过流保护、过压保护、过热保护、空载保护、短路保护等。 TOP1 继电器保护电路设计盘点 光耦亦称光电隔离器或光电耦合器,简称光耦。它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。以光为媒介把输入端信号耦合到输出端的光电耦合器,该电路采用的是全桥拓扑经过高频变压器转换再整流,实验项目是三相进线15V/6KA输出。其中,主回路的保护设计及报警设计是必不可少的。我首先想到的是,通过单片机输出控制继电器动作,而且由于抗干扰的要求,我必须通过光耦隔离。。于是乎,光耦隔离继电器保

  • 解扰电路之电路设计论文

    1扰码和解扰原理 同步扰码的实质是让输入比特与随机数产生器所产生的一位随机比特进行异或来产生扰码的输出比特,其原理如图1所示。JESD204B协议规定的扰码方式需采用自同步扰码方式,自同步的扰码与解扰电路结构如图2所示。可见,对于自同步串行扰码,每次扰码输出都是由移位寄存器第13位和第14位比特进行异或,得到的结果再与输入比特值进行异或而得到的。由于传输层数据成帧之后,往往是以8位或16位数据进行并行传输的,所以必须在串行扰码的基础上,设计8位并行或16位并行的扰码与解扰电路。下面将在串行扰码表达式的基础上推导并行扰码的逻辑表达式。串行扰码每次只处理一个比特。在每个时钟周期,移位寄存器只移一位[3]。对于串行扰码,假设此刻输入比特是bn,输出比特是an,则移位寄存器s0中存储的比特是an-1,依此类推移位寄存器s14中存储的比特是an-15,因此an=bn+an-14+an-15。则下一个时刻的输入比特是bn+1,输出比特

  • 电流测量之电路设计论文

    1电流测量 电流测量通路使用继电器进行电流通断控制,在电流通路串联电阻,将电阻两端的差分电平与电流取样芯片AD8218的差分输入连接,AD8218放大增益为20V/V,具有出色的共模输入抑制能力,本设计采用80mV内部基准电压源,可对2A以下电流进行采样测量;AD7920是12位串行ADC芯片,具有输入过载保护功能,通过单片机对各通路进行选择,并根据芯片的串行时序进行数据通讯,电流测量通路示意图如图1。 2固化程序 本电路作为USB从设备,与计算机程序采用问询-应答的方式进行通讯。电路的USB通讯协议、电流测量等基本功能由单片机程序模块实现,各通路电流的轮询测量等逻辑功能由计算机程序编程实现。单片机程序除了对端口、时钟、寄存器等资源进行必要初始化之外,主要负责US

  • 《Protel电路设计教程》

    Protel电路设计教程.part1

  • 图解高频电路设计与制作

    图解高频电路设计与制作+市川+290页+42.9M.part1.rar

  • 降压恒流高亮度LED驱动电路设计图

    降压恒流高亮度LED驱动电路设计图

    MAX16819/MAX16820是降压恒流高亮度LED (HB LED)驱动器,为汽车内部/外部照明、建筑和环境照明、LED灯泡如MR16和其他LED照明应用提供具有成本效益的解决方案。工作于4.5V至28V输入电压范围,并且有一个5V/10mA片上稳压器。输出电流由高边电流检测电阻调节,专用PWM输入(DIM)可实现宽范围的脉冲式亮度调节。 非常适合需要宽输入电压范围的应用。高边电流检测和内置电流设置电路可使外部元件的数量最少,并可提供±5%精度的 LED电流。在负载切换和PWM亮度调节过程中,滞回控制算法保证了优异的输入电源抑制和快速响应。MAX16819具有30%的电感纹波电流,而 MAX16820具有10%的纹波电流。这些器件可工作于高达2MHz的开关频率,从而允许使用小型元件。 MAX16819、MAX16820:简化框图

  • 放大器应用电子电路设计图的集锦

    放大器应用电子电路设计图的集锦

    与分立器件相比,现代集成运算放大器(op amp)和仪表放大器(in-amp)为设计工程师带来了许多好处。虽然提供了许多巧妙、有用并且吸引人的电路。往往都是这样,由于仓促地组装电路而会忽视了一些非常基本的问题,从而导致电路不能实现预期功能——或者可能根本不工作。 AC耦合时缺少DC偏置电流回路 最常遇到的一个应用问题是在交流(AC)耦合运算放大器或仪表放大器电路中没有提供偏置电流的直流(DC)回路。在图1中,一只电容器与运算放大器的同相输入端串联以实现AC耦合,这是一种隔离输入电压(VIN)的DC分量的简单方法。这在高增益应用中尤其有用,在那些应用中哪怕运算放大器输入端很小的直流电压都会限制动态范围,甚至导致输出饱和。然而,在高阻抗输入端加电容耦合,而不为同相输入端的电流提供DC通路,会出现问题。 <

  • 继电器电梯电路设计图及PLC的性价比,带图

    要做一个五层货梯,用电葫芦做的,五层,用继电器做,要求要像电梯一样,一至五层,每层按键的时候都能用,几层几个按钮,门不关不能启动和停电在无任何命令或自动上下到电梯口处。我知道用继电器做出来很麻烦,如果用PLC做,价格大概多少,PLC我不懂,一点也不会,就会继电器电路,麻烦大家帮个忙,知道的告诉我一下。先在这谢谢了。我要的是两样对比一下,我现在正在着手制作,只是感觉继电器电路太复杂,如果造价和PLC相差不大的话,用PLC还是好一些的。半年做过一个四层的货梯,不过老是有问题,现在经过几次的修改,终于运作正常了。发现了好些个继电器中逻辑问题,维修麻烦不说,还经常出现半路停电时上下不正常的问题。因为本人对PLC一点也不懂,所以没办法提出对于PLC的关点。于是请教了些高人,说是PLC会好些,现在先将电路图制出来,说是货梯,其实就是电动葫芦,有几个点要停,上下着来的,运行要像电梯一样的,也就是要用到这个电路了。图做成这样,大家用CADe_SIMU CN看一下,

  • 设备控制器电路设计论文

    为判断设备应该工作在何种状态,通过检测USB总线上的状态及其持续时间来确定。因此程序中设计使用了两个计数器timer1和timer2,通过使用cleartimer1和cleartimer2两个变量来灵活控制两个计数器的计数,进而实现精确定时。图2为工作模式控制电路的状态转换图,主要实现4个主要功能:高速握手(highspeedhandshake、设备挂起(suspend)、挂起恢复(resume)、复位检测。 1高速握手 USB2.0设备连接到主机后,主机给设备供电并发送复位信号复位设备,之后设备进入全速模式工作,由图2所示在fullspeed状态检测到SE0(linestate[1:0]=00)持续2.5μs后,高速握手开始,设备控制器进入sendchirp状态,设备向主机发送一个持续时间大于1ms的K(linestat

  • 多普勒频移电路设计论文

    卫星信号的捕获作为整个接收机基带信号处理的前提,其捕获信号的准确与速度对后续的基带信号处理有至关重要的作用。接收机中信号的捕获可以认为是一个二维的搜索过程,包括从伪码相位方向的搜索和从多普勒频移方向的搜索[2]。其中从多普勒频移方向的搜索,由上述分析可知,多普勒频移的最大搜索范围是±10kHz,它通过本地产生载波,并调节本地载波的值与输入信号相乘,从而去除输入信号中的高频载波分量。MATLAB仿真结果如图1所示。图1为算法的验证示意图,横轴代表800个数据点,纵轴代表数据的值。图中基带数据信号为C/A码,调制信号为载波和C/A码调制后的信号,按照本设计算法,在本地产生的载波和信号中的载波频率相位均一致的情况下,解调结果如图1的第3个波形,为只含C/A码的基带数据;图中的第4个波形为本地载波与信号载波同相的情况下相乘但未做后续处理的结果;图中第5、6个波形为当本地载波为信号中载波频率一半时,需解调两次的结果。由该MATLAB仿真图可知,该算法设计方案是可行的。下面进行具体的

  • ABS系统与高速电路设计论文

    1高速电路的概念 一般觉得倘若数字逻辑上的电路频率上升到甚至越过45MHz到50MHz并且作业时超越这个频率的电路已占整个电子系统的相关数值这样的电路就是高速电路。 2高速电路的分布 在运用高速电路时由于作业的次数增加频繁披长也就比较短了些。波长和线路的长短相近那我们一定要将信号看作电磁波的波动。换一种说法就是由集成电路方面转向分布电路方面。在研究高速电路中肩的地方需要运用电磁学的理论肖频率到达怎样的限度需要运用这个理论这是一个没法解决的问题。如此说来是不是就真的不可以解决?这也并不是这样还是有一个标准可以参考的:在信号发生变化时如果信号没有传送到最末端再反射回来那就可以想到电磁波的效应了。在研究传输线时应该牢记的一个点就是阻抗匹配”。阻抗匹配的意思就是信号输出、

  • 电平转换器电路设计论文

    1高压MOS管设计 扩展漏极漂移区是由轻掺杂的N阱形成,可以承受高电压。在漂移区等压线上均匀分布着电场减缓结构,可以提高其耐压值。为了提高栅漏之间的耐压漂移区上的厚场氧将场板提高。但导电沟道在薄栅氧的下面且器件的跨导与导电沟道有关,所以电场减轻结构不会影响器件的跨导,衬底和N阱之间的雪崩击穿电压和电场减缓结构的效果决定扩展漏极晶体管的额定电压。对此类器件设计需考虑以下参数:浓度和长坂长度、漂移区结深、长度等,器件耐压会随着漂移区长度的增加而逐渐上升,直到达到一定的值。外延层浓度、漂移区浓度和漂移区结深三者共同决定此值。值越大,外延层浓度应在保证源漏不穿通情况下尽量低。 2基于IP核低功耗单电源电平转换器设计 目前已经提出的电平转换器共有两类,分别是单电源转换器和双

  • 炮声识别电路之电路设计论文

    1系统硬件设计与实现 1.1系统硬件总体概述 基于声音炮弹检测电路主要硬件包括单片机及其外围电路和炮声采集、识别电路两部分。微处理器控制整个检测系统,对前端电路采集到的炮声进行处理,并利用软件控制进行记录和输出显示。根据系统需要,除了这两个主要部分之外,还相应的设计了一些辅助单元模块,如电源模块,数据显示单元等。电源模块主要用于给整个硬件电路提供稳定的电压,保证各部分的正常工作;数据显示单元用来对单片机系统处理后的数据进行外部显示,硬件框图如图1所示。该电路的具体工作过程为:首先进行声音采集,将采集的声音转化为相应的电信号再进行前置放大,然后将放大的信号通过比较器进行声音识别,而识别后的声音被转化为相应的高低电平,这样就可以传给单片机系统进行数据处理,最后将处理后的数据输出显示。 1.2电路设计

  • 保护电路与电路设计论文

    1接口保护电路设计 为了使RS422接口能在上述复杂环境中正常工作不被损坏,本文设计的一种接口保护电路如图1所示。通过在数据线路上串接电阻限制冲击电流,通过对地双向TVS二极管箝位冲击电压,并将接口的参考地通过一个0.1μF电容与机壳地相连来释放冲击能量。限流电阻的选择原则是在限制冲击电流的同时不能影响接口的正常驱动能力。经过测试,限流电阻阻值为25Ω时具有良好的保护效果。RS422接口收发器的工作电压为5V,差模电压范围是-6~+6V,可承受共模电压范围为-7~+7V。因此,RS422接口的TVS保护二极管的最大箝位电压应在7V左右,最大反向待机电压不低于6V。ONSemiconductor公司的阵列TVS二极管CM1248-08DE,其最大箝位电压为6.8V,最大反向待机电压为6.1V,符合RS422接口电气特性要求。CM1248-04DE由4路背靠背的TVS二极管构成,可以单向保护8路数据线或双向保护4路数据线。本文

  • 程序设计与电路设计论文

    1精密检测取样参数与电路设计 当电缆没有开路、错位质量故障时,A0~A31端的电缆等效电阻RT≤7000mΩ时,对A0~A31端分别取样进行精密测量。在综合考虑IC100~IC131输入端低电平应≤0.7V和图2中运算放大器输入灵敏度兼容情况下,取恒流源IS的输出电流为10±0.5mA,Re0~Re31=33Ω±5%,Vces≤0.1±0.05V。因此可以计算出VA采样取值范围是0.353~0.566V,VB的采样取值范围是0.348~0.384V。为此图2中选用OPA335运算放大器,其输入电压范围是0~3V(单电源供电时),最大输入失调电压为5μV。图2中运算放大器输出电压V0~V31可由式(4)计算。由于OPA335的最大输入失调电流是70pA,在设计中控制最大输入电流在0.1~1mA之间,选择RA=RB=2kΩ±5%,R1=RF=33kΩ±5%,电压增益为16.5,输出电压范围0~3.6V。

  • 差分滤波器电路设计论文

    1接地电容效果分析 在电路中电容C容抗值Zc=1/2πfC,且容抗随着频率f的增大而减小。因此滤波器电路中一个恰当的接地电容C,可使交流信号中的高频成分通过电容落地,而低频成分可以几乎无损失通过,故将小电容接地等同于设计一阶低通滤波器。在滤波器电路中,多处电容接地设计等同于多个低通滤波器与原电路组成低通滤波器网络,在提高截止频率附近幅频特性的同时会较好抑制高频干扰,因而接地优化在理论上是可行的。 2滤波器设计仿真 根据实践需要,设计满足上级输出电路阻抗为100Ω、下级输入电路阻抗为50Ω、截止频率为5MHz的5阶巴特沃斯低通滤波器。普通差分滤波器由于其极点与单端滤波器极点相同,故具有相同的传递函数,因而依据单端滤波器配置的差分结构滤波器能够满足指标要求。在差分结构

  • 电路设计中如何防止静电放电?(上)

    我们的手都曾有过静电放电(ESD)的体验,即使只是从地毯上走过然后触摸某些金属部件也会在瞬间释放积累起来的静电。我们许多人都曾抱怨在实验室中使用导电毯、ESD静电腕带和其它要求来满足工业ESD标准。我们中也有不少人曾经因为粗心大意使用未受保护的电路而损毁昂贵的电子元件。 对某些人来说ESD是一种挑战,因为需要在处理和组装未受保护的电子元件时不能造成任何损坏。这是一种电路设计挑战,因为需要保证系统承受住ESD的冲击,之后仍能正常工作,更好的情况是经过ESD事件后不发生用户可觉察的故障。

  • 电路设计中如何防止静电放电?(下)

    堡垒的作用 利用板级ESD,你可以尝试建立一个堡垒,并在“护城河”上建立多个受控的接入点。连接到“城墙”之外的部分可以被广义地分成几个类别:协议受控的数据、低带宽检测和控制线以及高速接口。前两个比较容易处理,第三个具有一定程度的挑战性。让这三部分免遭ESD破坏有几种不同的方法。

点击加载更多

电路设计图

电路设计图专题,为您提供电路设计图相关的专业交流帖进行参与,欢迎您参与电路设计图 相关的专业交流讨论,更多电路设计图相关内容请访问

土木在线论坛

相关帖子

 

分享用户量

 

下载热度

 

电路基础原理

电路图